пусть одна сторона х см
вторая сторона у см
составим систему уравнений:
{2х+у=42 {у=42-2х
{2х+2у=46 {2х+2(42-2х)=46
2х+84-4х=46
-2х=-38
х=19 - одна сторона параллелограмма
у=42-2*19=42-38=4
Ответ: стороны параллелограмма 19 см и 4 см.
Даны два равнобедренных треугольника. У каждого из вершины к основанию проведена медиана, которая в свою очередь, в равнобедренных треугольниках, является и биссектрисой и высотой. Поэтому каждый наш равнобедренный треугольник (и первый и второй) делятся медианой два одинаковых прямоугольных треугольника (они равны по двум сторонам - высоте и боковой стороне - и углу между ними).
Если мы докажем, что один прямоугольный треугольник нашего первого равнобедренного треугольника равен прямоугольному треугольнику второго нашего равнобедренного треугольника, то докажем равенство равнобедренных треугольников с одинаковой медианой и одинаковым углом при вершине.
Итак, у обоих треугольников равны высоты (наша медиана), равны прилегающие к высоте углы, один из которых прямой, другой равен половинке угла при вершине. А эти углы равны, т.к. одинаковые углы при вершине делятся биссектрисой пополам. Отсюда, наши равнобедренные треугольники равны по стороне и двум прилегающим углам.
В равнобедренном треугольнике углы при основании равны, следовательно, (т.к. сумма углов в треугольнике равна 180 градусов) два угла при основании равны 140 градусов, а один угол при основании 70