<u><em>ОБРАТНОЕ УТВЕРЖДЕНИЕ:</em></u>
Если высота, проведённая к стороне (именно "стороне", потому что мы ещё не доказали, что треугольник равнобедренный) треугольника делит эту сторону пополам, то такой треугольник равнобедренный.
<u><em>Дано:</em></u> ΔАВС, ВН- высота, АН=НС
<u><em>Доказать:</em></u> АВ=ВС
<u><em>Доказательство:</em></u> ΔАВН и ΔСВН - прямоугольные, так как ВН - высота.
ΔАВН=ΔСВН по первому признаку равенства треугольников (АВ=ВС, ВН- общая сторона, угол ВНА = углу ВНС=90⁰), значит АВ=ВС, и Δ АВС равнобедренный.
<em>Ну и, как "Лучшее решение" не забудь отметить, ОК?!... ;))) </em>
Точка О - центр окружности. Значит EO=OF=OC=OB как радиусы этой окружности. Значит треугольники OEB и OCF равны по трем сторонам. А значит CD=BA
Проведем высоты из вершин верхнего основания на нижнее.
См. рисунок в приложении.
Получим два равных прямоугольных треугольника и прямоугольник.
Один острый угол в прямоугольных треугольниках 60°, второй 30°
Против угла в 30° лежит катет равный половине гипотенузы ( боковой стороны). Этот катет равен 1.
Верхнее основание 40-1-1=38
Пусть С- начало координат.
Пусть ромб единичный.
Ось X - CA
Ось Y - перпендикулярно X в сторону B
Ось Z - перпендикулярно плоскости ромба в сторону E
координаты точек
E(√3;0;2)
B(√3/2;0.5;0)
D(√3/2;-0.5;0)
Уравнение плоскости EBC (проходит через начало координат)
ax+by+cz=0
подставляем координаты точек
√3a+2c=0
√3a/2+b/2=0 или √3a+b=0
Пусть a=2√3 тогда b= -6 c= -3
уравнение 2√3x-6y-3z=0
Уравнение плоскости ECD (проходит через начало координат)
ax+by+cz=0
подставляем координаты точек
√3a+2c=0
√3a/2-b/2=0 или √3a-b=0
Пусть a=2√3 тогда b= 6 c= -3
уравнение 2√3x+6y-3z=0
Косинус искомого угла равен
| 2√3*2√3 -6*6 +3*3 | / ((2√3)^2+6^2+3^2) = 15 / 57 = 5/19