Первое, третье (кстати, и высотой тоже) и четвёртое
Правильный четырехугольник ABCD - это квадрат.
Центр окружности, описанной около квадрата - О - точка пересечения диагоналей.
Из прямоугольного треугольника АВС по теореме Пифагора:
АС = √(АВ² + ВС²) = √(20² + 20²) = √(20² · 2) = 20√2 см,
АО = АС/2 = 10√2 см.
Дано: правильная четырехугольная призма, =>
основание призмы - квадрат
S квадрата = а², а - сторона квадрата
D=25 см
H=15 см
1. прямоугольный треугольник:
гипотенуза D=25 см - диагональ правильной четырехугольной призмы
катет Н = 15 см - высота правильной четырехугольной призмы
катет d - диагональ основания правильной четырехугольной призмы, найти по теореме Пифагора
D²=H²+d²
25²=15²+d², d²=25²-15², d²=625-225. d²=400
2. прямоугольный треугольник:
катет а= катету b
гипотенуза d (диагональ квадрата)
по теореме Пифагора:
a²+a³=d³, 2a²=d²
2a²=400
a²=200, => S квадрата =200 см²
ответ:
площадь основания правильной четырехугольной призмы =200 см²
TgA=sinA/cosA Возведем обе части в квадрат .tg^2A =sin^2A /cos^2A .По основному тригонометрическому тождеству sin^2A =1-соs^2A .
Получаем
21/4=(1-cos^2A)/cos^2A ; 25cos^2A=4 ;cosA=2\5
Примечание:^2 значит в квадрате