Возможны 2 варианта построения угла ADP ---над прямой AD и под прямой AD
получившийся треугольник PAD в любом случае будет равнобедренным (по условию) и угол APD = ADP = 10 градусов. PAD = 160 градусов.
второй получившийся треугольник PAB тоже в обоих случаях будет равнобедренным...
в одном случае остроугольным PAB = PAD - 90 = 160-90 = 70
APB=PBA = (180 - PAB)/2 = 110/2 = 55
во втором случае тупоугольным PAB = 360 - PAD - 90 = 360-160-90 = 110
APB=PBA = (180 - PAB)/2 = 70/2 = 35
1. Прямая, проходящая через середины сторон AB и CD является средней линией трапеции, она параллельна основаниям ВС и AD. По признаку параллельности прямой и плоскости, если прямая параллельна AD, то она параллельна и плоскости <span>α.
2. Если через прямую параллельную плоскости проходит другая плоскость и пересекает первую, то линия пересечения параллельна данной прямой. ЕС </span>|| Е1С1, тогда Δ В1Е1С1 подобен ΔВЕС с коэффициентом подобия 3/8 (т к C1E1:CE=3:8). тогда ВС1:ВС=3/8, ВС1=ВС* 3/8=10,5 см.
3. Прямая, проходящая через середины AE и BE является средней линией треугольника АВЕ, она параллельна АВ, в свою очередь АВ||CD по свойству параллелограмма, тогда если две прямые параллельны третьей, то они параллельны между собой, значит <span>прямая, проходящая через середины AE и BE, параллельна прямой CD.</span>
Синус угла А равен отношению ВС к АВ, то есть 4:5. Примем ВС за 4х, а АВ за 5х. По теореме Пифагора находим АС:
АС= √25х^2-16х^2=√9x^2=3x.
Косинус угла А равен отношению АС к АВ, то есть 3x:5x или же 3:5=0,6.
Ответ: 0,6.