<u><em>Сторона a(n) правильного n-угольника связана с радиусом R описанной окружности формулой</em></u>
<em /><em>a(n)=2R sin(180:n)=2Rsin(π:n</em><em>).</em>
Найдем радиус окружности из формулы длины окружности
C=2πR
R=C:2π
R=12π:2π=6
a(n)=2R sin180:n=2Rsin(π:n)
Подставим известные значения:
6√3=12*sin(180:n)
sin(180:n)=6√3):12=√3):2
√3):2- синус 60 градусов.
180:n =60
n=3
<em>Этот многоугольник - равносторонний треугольник</em>.
<u>Проверка:</u>
Высота этого треугольника по формуле h=а√3):2
h=6√3*√3):2=9
Радиус описанной окружности равен 2/3 высоты:
9:3*2=6, что соответствует условию задачи.
Диагонали ромба точкой пересечения делятся пополам (как и у параллелограмма)
Диагонали ромба взаимно перпендикулярны
Диагонали ромба являются биссектрисами его углов
из треуг.BOA: угол BAO=30, катет BO = 4/2 = 2 (катет против угла в 30 град.=половине гипотенузы) и по т.Пифагора второй катет = корень(4^2-2^2) = 2корень(3)
следовательно, диагонали ромба равны
BD = 2BO = 4
AC = 2AO = 4корень(3)
AC1^2 = AC^2 + CC1^2 = 4*4*3 + 6*6 = 4*(12+9) = 4*21
AC1 = 2корень(21)
B1D^2 = BD^2 + CC1^2 = 4+36 = 40
B1D = 2корень(10)
А что найти нужно?
Если паралилограмм то , угол b=30*, угол C=60*
Угол В и D =120))
Треугольник МВN- равнобедренный, т. к. BN=BM (по условию), значит, угол M= углу N.
Угол В=180гр. -(угол М+ угол N)
Угол В=180-(75+75)=180-150=30 гр.
Также треуг. СВА подобен треуг. МВN, отсюда следует, что треуг. СВА=30 гр.
Ответ:30 градусов
Площадь трапеции равна полусумме оснований, умноженной на высоту.
см²