Находим внутренний угол:
180-70=110
Находим углы у основания (которые равны):
180-110=70
70:2=35
Ответ: углы 110, 35, 35.
Пусть А - начало координат
Ось X - AB
Ось Y - AD
Ось Z - AA1
Координаты точки М - середины AA1
M(0;0;3/2)
Координаты точек плоскости
С(4;4;0)
D1(0;4;3)
Уравнение плоскости ( проходит через начало координат)
ax+by+cz=0
Подставляем координаты точек плоскости
4a+4b=0
4b+3c=0
Пусть с= -4 Тогда b=3 a= -3
Искомое уравнение
-3x+3y-4c=0
нормализованное уравнение плоскости
k=√ (3^2+3^3+4^2)= √34
-3x/√34+3y/√34-4z/√34=0
подставляем координаты M в нормализованное уравнение чтобы найти искомое расстояние
| -3*4/(2√34) | = 3√34/17
АВСД -основание пирамиды, Р вершина пирамиды, точка .О центр основания,
АВ=2Lsin(α/2)
АС=АВ√2=2√2Lsin(α/2)
СО=АС/2
По теореме Пифагора находим РО=√(РС²-СО²)=√(L²-2L²sin²(α/2))=L√(1-2sin²(α/2))=H
R=АВ
V=πR²H/3 V=(П(AB²)L√(1-2sin²(α/2)))/3
использованы формулы: площадь полной поверхности, площадь ромба, теорема Пифагора