Найдём уравнение прямой АС. Для этого запишем уравнение прямой в общем виде: y = kx+b и подставим два раза координаты имеющихся точек:
6 = k*3+b
8 = k*7+b
Вычтя из второго уравнения первое, получим:
2 = 4*k
k = 0,5, подставив это, допустим, во второе, найдём b:
b = 8 - 7*0,5 = 4,5
Значит уравнение прямой АС: y = 0,5*x+4,5.
Повторим эти действия для отрезка BD:
9 = 2*k+b
5 = 8*k+b
-4 = 6*k
k = -2/3
b = 9 - 2*(-2/3) = 10 1/3
Уравнение BD: y = -2/3*x + 10 1/3.
Составляем систему из обоих получившихся уравнений. Если система имеет решение - значит отрезки пересекаются (строго говоря, пересекаются содержащие их прямые, но если эта точка будет внутри отрезков, то и отрезки):
<span>y = 0,5*x+4,5.
</span>y = -2/3*x + <span>10 1/3
</span>Вычитаем из первого второе:
0 = 7/6*x - 5 5/6
x = (5 5/6 )* 6/7 = 35/6 * 6/7 = 5
Подставляем в первое, находим y: y = 0,5*5+4,5 = 7
Итак, мы получили координаты точки пересечения: (5;7). Теперь убедимся, что она лежит в середине обоих отрезков. Для этого сравним разности абсцисс и ординат этой точки и концов отрезков:
5-3=7-5
7-6=8-7
Отрезок АС проверен, продолжаем для BD:
5-2=8-5
9-7=7-5
Все равенства выполняются, а значит точка действительно является серединой обоих отрезков.
Спрашивайте, если что непонятно.
Х - ширина прямоугольника,
х + 6 - его длина.
Площадь:
x (x + 6) = 112
x² + 6x - 112 = 0
D/4 = 3² + 112 = 9 + 112 = 121
x = - 3 + 11 = 8 или х = - 3 - 11 = - 14 не подходит по смыслу задачи
Ширина: 8 см.
Длина: 8 + 6 = 14 см.
Так как угол KBN - внешний для треугольника КВС, то по теореме о внешних углах угол КВN = угол С + угол К
Т.е. 80 = 6x + 12+ 2x + 4
80 = 8x + 16
8x = 80 - 16
8x = 64
x = 64/8
x = 8
Значит, угол С = 6 * 8 +12 = 60
25) Треугольники АВС и DВЕ подобные, коэффициент подобия равен АВ/ВD=4, все стороны треугольника АВС будут больше соответственных сторон треугольника DВС в 4 раза.
Построим высоту ВМ в треугольнике АВС, соответственно ВК будет высотой в треугольнике DВС.
Допустим, что ВК=х, DЕ=у, тогда АС=4х, ВМ=4у.
Определим площадь треугольников DВЕ и АВС.
S1 - площадь треугольника DВЕ,
S2 - площадь треугольника АВС.
S1=0,5ВК·DЕ=0,5ху,
S2=0,5ВМ·АС=0,5·4х·4у=8ху.
Обозначим площадь трапеции АDЕС - S3=60.
S2-S1=S3,
8ху-0,5ху=60,
7,5ху=60,
ху=8.
S2=8·8=64 (кв. ед.)
Ответ: 64 кв. ед.
29) По свойству биссектрисы треугольника имеем:
ВD:СD=АВ:АС,
9:15=х:18,
х=9·18:15=10,8.
Ответ: 10,8 (л. ед)
Ответ: 10,8 л.ед.
30) По свойству биссектрисы треугольника
LM:LR=MN:NR,
y:x=14:10.5;
x=0,75y.
x+y=20;
0,75y+y=20;
1,75y=20;
y=80/7.
x=20-(80/7)=60/7.
Ответ: 60/7; 80/7.
31) Треугольник ВСD равнобедренный (два угла равные). ВD=ВС=8.
ВD- биссектриса, по свойству биссектрисы
СD:АD=ВС:АВ;
х:10=8:15;х=80/15=5(3).
Ответ: 5,(3)
Из первой части условия делаем вывод, что треугольники подобны, следовательно, две стороны первого треугольника относятся как 1:2
Две стороны равны => их отношения 1:2:2 (1:1:2 не допустимо т.к. сумма двух сторон всегда больше третьей стороны)
1+2+2 = 5
545 / 5 = 109 — основание
109 * 2 = 218 — боковая сторона (они обе равны)
Ответ: основание — 109см, боковые стороны — по 218см