В результате такого вращения получается конус с вырезанным конусом снизу, объем равен объем большого конуса минус объем конуса который вырезали снизу.
Если треугольник ABC с вершиной B и стороной AB = 10, то угол A = 30 градусов. Пусть он вращается вокруг стороны AB, тогда продолжим ее и отметим точку на основании конуса вращения как D (за точкой B). Из ΔBCD BD = 10 * sin 30 = 10 * 1/2 AD = 10 + 10 *1 /2 DC = 10 * cos(30) = 10 * √3 / 2 Объем большого конуса Vb = 1/3 π R² H = 1/3 π DC² · AD = 1/3 π (10 * √3 / 2) ² (10 + 10 *1 /2) Объем малого (радиус у них одинаковый) Vm = 1/3 π R² h = 1/3 π DC² · BD = 1/3 π (10 * √3 / 2) ² (10 *1 /2)