Диагонали ромба пересекаются под прямым углом. Если на диагоналях ромба от точки их пересечения отложены четыре равных отрезка, то в полученном четырехугольника получится, что диагонали равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы четырехугольника пополам (то, что делят углы пополам видно из того, что диагоналями четырёхугольник делится на 4 равных равнобедренных прямоугольных треугольника, у которых катеты -это половина диагоналей, а гипотенуза - сторона четырехугольника; следовательно углы при гипотенузе равны по 45 градусов). Углы полученного четырехугольника - прямые. Все это относится к свойствам квадрата, значит четырёхугольник -квадрат, что и требовалось доказать.
Меньшая боковая сторона прямоугольной трапеции - это высота.
Проведем вторую высоту из тупого угла. Трапеция разбивается на прямоугольник 5х6 и прямоугольный треугольник с катетом 6 и углом 45°. Второй катет тоже равен 6 см.
Значит, площадь трапеции равна
<span>S = 5*6 + 6*6/2 = 30 + 18 = 48 кв. см.</span>
АВСА1В1С1-прямая призма
АВС-прямоугольный треугольник
АВ=20 см -гипотенуза, АС=16 см-катет
-------------------------------------------------
1.СВ=sqrt{AB^2-AC^2}=sqrt{20^2-16^2}=sqrt{144}=12(см)-катет
2.В треугольнике СС1В1 СВ1=sqrt{CC1^2+C1B1^2}= sqrt{5^2+12^2}=13(см)
3.Sполн.=2*Sосн+Sбок=2*АС*ВС/2 +( АС+АВ+СВ)*СС1=
=16*12+(16+20+12)*5=432 (см кв)
Ответ: 432 см кв