В равносторонне цилиндре высота и диаметр основания равны.
Площадь поверхности: S=2Sосн+Sбок=2πD²/4+πDH=πD²/2+πD²=3πD²/2 ⇒
D²=2S/3π=2·2.4/3π=1.6/π.
Площадь боковой поверхности: Sбок=πD·H=πD²=1.6 м² - это ответ.
Имеем треугольник АВС, где С=90 и А-меньший угол, тогда биссектриса угла А пересекает СВ в точке Е.
Рассмотрим углы СЕА и ВЕА , их сумма=180 , при этом ВЕА-СЕА=20 => ВЕА=20+СЕА=>
СЕА+ВЕА=СЕА+20+СЕА=180
2*СЕА=180-20
СЕА=80
Рассмотрим треугольник САЕ, угол С=90, Е=80 => угол САЕ=10 => что в треугольнике АВС угол А=10*2=20 (т.к. биссектриса по определению делит угол пополам), следовательно в треугольнике АВС угол В=180-90-20=70
Ответ: 70 и 20
вроде так
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон. 2(8^2+9^2)=13^2+х^2; х^2=290-169; х=√121=11 см^2; ответ: 11
<span>ABCD-трапеция
AB=BC=AD=8 см
УГОЛ A=120</span>°<span>
найти
<em>DC=?</em>
</span>По условию данная трапеция равнобедренная.
Опустив высоты АК и ВЕ, разделим ее на прямоугольник АКЕС и два прямоугольных треугольника АКD и ВЕС .
<span>В трапеции сумма углов, прилежащих к боковой стороне, равна 180°. </span><span>Следовательно, угол D=180°-120°=60°
</span><span>Поэтому угол DАК=180°-90°-60°
</span><span>Угол DАК=30°.
</span><span><em>В прямоугольном треугольнике катет, противолежащий углу 30°, равен половине гипотенузы</em>.
</span>DК=8:2=4 см
На том же основании ЕС=4
<em>DС</em>=4+8+4=<em>16 см</em>.
ответ 30 градусов !!!!!!!!