Пусть 2(х) и 3(х) угол = 2х
48+2х=360
2х=360-48
2х=312 | :2
х=156
4 угол = 78
Привет. А ты начерти этот отрезок в декартовой системе координат и увидишь
Пусть в трапеции АВСД основания ВС=а, АД=в, АС и ВД - диагонали, О - точка их пересечения, ВН - высота трапеции, М - точка пересечения высоты ВН и искомого отрезка КЛ.
По условию КЛ параллельна ВС, следовательно ΔАВД подобен ΔКВО, а ΔАВС подобен ΔАКО. Т.к. в подобных треугольниках высоты пропорциональны сторонам, на которые они опущены, то КО/АД=ВМ/ВН, КО/ВС=МН/ВН.
Отсюда КО/АД+КО/ВС=ВМ/ВН+МН/ВН
<span>КО*(ВС+АД)/АД*ВС=(ВМ+МН)/ВН, </span>
т.к. ВМ+МН=ВН, то
КО*(а+в)/ав=1
КО=ав/(а+в)
Аналогично, из подобия ΔДОЛ и ΔДВС, а также Δ ОСЛ и ΔАСД, находим ОЛ:
ОЛ=ав/(а+в)
<span>КЛ=КО+КЛ=ав/(а+в)+ав/(а+в)=2ав/(а+в)</span>
Только там в конце АМ/АС=МС/АВ СЛЕДОВАТЕЛЬНО АС =АМ*АВ/МС