Ам×мб=см×мд свойство хорд, пересекающих
мд=2×5/4=2,5
В равнобедркнной трапеции АВ=CD=BN (так как BN ║CD). AB+BN+AN=33 см (дано). => 2AB+AN=33 см. AN =AD-BC = AD -7см. Тогда 2АВ+AD - 7 = 33см => 2AB+AD = 40см. => 2AB+AD+BC = 47см.
Ответ: Pabcd = 47см.
Опустим из вершин углов при основании ВС высоты ВН и СК к АД.Высоты разделили основание АД на три отрезка.Обозначим отрезок АН=хОтрезок КН = ВС=16 см , поэтому отрезокКД=41-16-х=25-хНайдем квадрат высоты ВН (СК) из прямоугольных треугольников, примыкающих к боковым сторонам, где эти стороны - гипотенузы. ВН²=АВ²-х²СК²=СД²-(25-х)²
АВ²-х²=СД²-(25-х)²225-х²=400 - (625-50х+х²)225-х² =400- 625+50х -х²50х=450
х=9
АН=9 см, ВН=12 см (египетский треугольник)
S=(16+41):2*12=342 cм²
1)По теореме Пифагора найдем гипотенузу АС^2=36+64=100
АС=10
2)у прямоугольного треугольника 2 острых угла,пусть угол В=90,найдем sin,cоs,tg углов А и С. sin-это отношение противолежащего катета к гипотенузе,т.е sin A=вс/ас
sin A=6/10=3/5
sin С=АВ/Ас
sin C=8/10=4/5
3)cos-отношение прилежащего катета к гипотенузе,т.е cos A=aв/ас
cos A=8/10=4/5
cos С=Bc/Ас
cos C=6/10=3/5
4)tg-отношение синуса к косинусу,т.е tg A=sinA/cos A
tgA=3/5 / 4/5=3/4
tg C=sinC/cosC
tgC=4/5 / 3/5 =4/3
Угол вершины = 180-78 =102; Угол при основании = (180-102)/2=39
Ответ: 39