1) Пусть ABCD- равнобедренная трапеция, AB=CD=a;
BC=b; AD=c;
2) Из вершины тупого угла ABC опустим перпендикуляр BH к стороне AD.
3) AH=AD-BC/2 (по св-ву р/б трапеции); AH=c-b/2, но с-b=a (по условию).
4) Рассмотрим прямоугольный треугольник ABH: cos A= AH/ AB; AB=a; AH=a/2 (из 3). Из этого следует, что cos A=1/2, значит, угол A=60 градусов
5) <BAC+<ABC=180 градусов
<ABC=120 градусов
Ответ: <ABC=120 градусов
Умнож 3 на все стороны и всё
L=2*П*R=8*П
R=8*П/(2*П)=4
S=П*R^2=3,14*16=50,24 см^2
полощадь равна 3+7/2= 5 5*4= 20