Пусть сечение цилиндра - квадрат АМКВ.
АМ=КВ=16 см по условию. ⇒АВ=МК=16.
Расстояние между осью цилиндра и плоскостью, параллельной ей, равно длине отрезка ОН, проведенного от оси перпендикулярно плоскости сечения.
Радиусы цилиндра ОА и ОВ образуют с основанием сечения АВ <u>равнобедренный треугольник АОВ</u>., в котором ОН - высота и делит АВ пополам.
ОН=6, АН=16:2=8
По т.Пифагора из ∆ ОАН
Радиус ОА=√(AH²+OH²)=√100=10 см – это ответ.