высота делит треугольник на 2 равных прямоугольных треугольника, рассмотрим 1 из них:
гипатенуза 13 см, один из катетов равен 5см, по т.Пифагора находим длину 2-го катета квадрат катета равен 13*13 - 5*5 = 144;
корень 144 = 12 см - второй катет;
находим площадь прямоугольного треугольника, это половина произведения катетов и будет ровна 12*5/2 = 30кв.см.
т.к. площадь равнобедренного треугольника ровна сумме площадей двух прямоугольных треугольников и ровна 30*2 = 60 кв.см.
Ответ:площадь равнобедренного треугольника ровна 60 кв.см.
<em>1)(х+3)²+(у-1)²+(z+2)²=R²</em>
<em>(3+3)²+(4-1)²+(-1+2)²=R²</em>
<em>36+9+1=R²</em>
<em>(х+3)²+(у-1)²+(z+2)²=46</em>
<em>2) x²+y²+z²-4x+6y-8z-7=0</em>
<em>(х-2)²-4+(у+3)²-9+(z-4)²-16-7=0</em>
<em>(х-2)²+(у+3)²+(z-4)²=36</em>
<em>(х-2)²+(у+3)²+(z-4)²=6²</em>
<em />
<em />
Сумма смежных углов всегда равна 180, значит угол АОД=180-120=60°
Диагонали прямоугольника равны и в точке пересечения делятся пополам, следовательно АО=ДО, и треугольник АОД является равнобедренным, то есть угол ОАД=углу ОДА, значит ОАД+ОДА=180-60=120, угол ОДА=60°;
Мы получаем, что треугольник ОАД-правильный, поэтому все его стороны равны и АД=АО=10.
Пусть высота проведенная из прямого угла А (треугольника АBC) будет обозначена АК. Тогда ВК является проекцией стороны АВ на гипотенузу ВС, а КС -проекцией АС на гипотенузу. Согласно формулам : АВ=√ВК*ВС и АС=√КС*ВС.
Мы знаем соотношение катетов АВ и АС = 6:5, значит надо составить пропорцию АВ/АС=√ВК*ВС/√КС*ВС, ВС сокращается и получаем , что ВК/КС=(АВ/АС)^2=36/25
Зная ,что ВК больше КС на 11см, получаем ВК=КС+11, подставим в предыдущую формулу, получим
(КС+11)/КС=36/25
25(КС+11)=36КС
25КС+275=36КС
11КС=275
КС=25см
ВК=25+11=36см, значит гипотенуза ВС=ВК+КС=25+36=61см
Отве: 61см