Объем пирамиды: 1/3 S основания * h
площадь прямоугольного треугольника: 1/2 стороны * h = 2,5 * 12(по теореме пифагора нашли) = 30
30/3 = 10 и умножаем на высоту пирамиды 15
ответ 150
Центр заданной окружности лежит на пересечении биссектрис (они же высоты и медианы) равностороннего треугольника, образованного центрами окружностей радиуса R.
r = (R/cos 30) - R = (R/(√3/2)) - R = (2R/√3) - R = (R*(2-√3)) / √3.
Тк угол АОВ=60°,то ВАО=30°(ОВ перпендикулярна АВ-по св-ву касательной)
по св-ву прямоуг. ∆а:
угол ВАО=30°,то ОВ=½АВ
Следовательно, АВ=24см)
В параллелограмме BCDE угол MDE=углу DMC как внутренние накрест лежащие и равен углу MDC, т.к. биссектриса угла D разделила его пополам. Следовательно, МС=CD и треугольник MCD- равнобедренный. CD=10см. BE=СВ=10см. 10х2+(10+7)х2=54(см)- периметр параллелограмма.