<span><em>В сектор, центральный угол которого 120 градусов, вписан квадрат со стороной а. <u>Найти радиус сектора.</u></em></span>
Обозначим вписанный квадрат АВСД,
В и С - точки касания с дугой сектора, точки А и Д - с его сторонами-радиусами, О - вершина угла сектора.
∆ АОД - равнобедренный, углы при А и Д равны 30º.
Из О проведем биссектрису угла АОД до пересечения с ВС в точке М. Обозначим точку пересечения с АД - Н.
Тогда <u>ВО - искомый радиус R</u>
R²=МО²+МВ²
МВ=а/2
МО=МН+НО
МН=а,
ОН=ДН*tg30º=(а/2)*1/√3=a/2√3
МО=а+a/2√3=а(2√3+1)
R²=[3a²+a²(2√3+1)²]:12
R²=a²(4+√3):3
R=a√(4+√3):√3
--------------------------------------------------
<u>Или по т. косинусов:</u>
R²=АВ²+АО²- 2АВ*АО*cos∠ВАО
∠ВАО=90º+30º=120º
cos120º=-cos∠60º= -1/2
Из ∆ АОН
АО=АН/sin60º=a/√3
R²=а²+а²/3- (2а²/√3)*(-1/2)
R²=а²(4√3+3):3√3=а²(4√3+√3*<span>√3)</span>:3√3
Сократим выражение на √3
R²=а²(4+√3):3
R=a√(4+√3):√3
Найдем ТЕ. АЕ = 1, так как середина АВ. По теореме Пифагора:
ТЕ * ТЕ = АТ * АТ - АЕ * АЕ = 4 - 1 = 3.
ЕК, очевидно, равно 2(из прямоугольника ЕВСК).
Снова, по теореме Пифагора найдем ТК:
ТК * ТК = ТЕ * ТЕ + ЕК * ЕК = 3 + 4 = 7.
ТК =
Ответ: 57°
∠BLC=180°-112°=68°(сумма смежных углов равна 180°)
∠BAL=180°-(106°+68°)=6°(сумма углов в любом треугольнике равна 180°)
Т.к. AL-биссектриса, значит ∠BAC=6*2=12°
Т.к. сумма углов в треугольнике 180°, ∠BCA=180°-(106°+12°)=57°
Больший угол напротив большей стороны.Следовательно, Уолл напротив стороны ,равной 96, больший.