Площадь прямоугольника через диагональ
В прямоугольнике диагонали равны между собой. Если известен угол α между диагоналями (длина диагоналей равна d), то площадь прямоугольника можно найти по формуле:
Sпр = 0,5 * d² * sinα.
Например, если угол между диагоналями равен 30°, а диагонали равны 5 см, то площадь будет равна:
Sпр = 0,5 * 25 * 0,5 = 6,25 см.
<hr />
Если неизвестен угол между диагоналями, то будет нужно найти стороны прямоугольника. А затем воспользоваться формулой:
Sпр = a * b.
Как известно, диагональ прямоугольника делит его на 2 равных прямоугольных треугольника. Поэтому задача сводится к тому, чтобы найти катеты прямоугольного треугольника через гипотенузу.
Кроме длины диагонали требуется знать либо одну из сторон прямоугольника, либо отношение сторон, либо угол между стороной и диагональю.
1) Если известна диагональ (пусть она будет равна d) и одна из сторон (например, b), то выражаем неизвестную сторону из формулы:
a² + b² = c² -> a = √(c² - b²).
Sпр = a * b = √(c² - b²) * b.
Например, если диагональ d = 5 см и сторона b = 3 см, то a = √(25 - 9) = √16 = 4 см.
Площадь прямоугольника равна 3 * 4 = 12 см.
2) Если известно отношение сторон, то задача сводится к нахождению обеих сторон через составление уравнения.
Например, если стороны относятся как 2:3, а диагональ равна 13 см, то можно составить уравнение:
(2x)² + (3x)² = 4x² + 9x² = 169.
13x² = 169.
x = √13.
Значит, a = 2√13 см и b = 3√13 см.
Площадь прямоугольника равна 2√13 * 3√13 = 6 * 13 = 78 см.
3) Если известна диагональ и один из прилежащих к диагонали углов, то нужно воспользоваться формулами:
a = d * cosβ (β - прилежащий угол) и b = d * sinα (α - противолежащий угол).
Например, d = 10 см и угол α = 30°.
a = 10 * cos30° = 10√3 / 3.
b = 10 * sin30° = 5 см.
Площадь прямоугольника равна 5 * (10√3 / 3) ≈ 28,33 см.