Task/26684431
---------------------
см приложение
Трапеция ABCD: ∠A =∠B = 90°, ∠DCA = 45° ⇒ ∠DAC = 45° ⇒ ΔCDA - равнобедренный, AD = DC = 4 см, то AC = √DC² + AD² = √16 + 16 = 4√2 см, ∠DCB = 135° ⇒ ∠ACB = 45°, ∠CBA = 45° ⇒ ΔACB - равнобедренный, ⇒ AC = CB = 4√2 см, AB = √AC² + CB² = √32 + 32 = 8 см. S =( (CD + AB) · AD) : 2 = 24 см²
<span>диагонали ромба пересекаются под прямым углом, касательная - это линия проходящая через конец радиуса и перпендикулярна прямой</span>
Обозначим трапецию буквами ABCD. Пусть угол BAD=90 градусов, AD - нижнее (большее) основание, BC - верхнее (меньшее) основание
По условию AD=20см, CD=20см, угол CDA=60 градусов
Опустим из точки C высоту на нижнее основание, пусть CE - высота. Рассмотрим треугольник CDE. Он прямоугольный, угол CED=90 градусов
Тогда ED=CD*cos CDE=20*cos 60=20*1/2=10см
Найдем AE:
AE=AD-ED=20-10=10
Так как трапеция прямоугольная, EC=AB, BC=AE=10см
Ответ: меньшее основание трапеции 10см.