Если C- биссектриса ∠BAD, то ∠BAC=∠DAC, но ∠DAC=∠ACB, как накрест лежащие углы при параллельных прямых BC и D и секущей AC
Значит ΔABC-равнобедренный, то есть АB=BC=11 см
Р=AB+BC+CD+AD=3*11+18=51 см (AB=CD, так как трапеция равнобедренная)
Ответ: 51 см
Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе. Из точки В опускаем перпендикуляр на луч ОА и ставим точку М.
Теперь у нас есть прямоугольный треугольник. Считаем его катеты по клеточкам. Большой 4 единицы, маленький 2 единицы. Можно, конечно теперь найти тангенс угла, который равен отношению противолежащего катета к прилежащему катету, но там тангенс не нужен, потом из него косинус долго выражать. Найдем гипотенузу по теореме Пифагора:
с^2=2^2+4^2=20
c=√20
cosBOA=2/√20=2/2√5=1/√5
ну что за вопрос, сумма углов в 3-угольнике равна 180 градусов
b=180-35-35=110 град.
Обозначим сторону через , а диагональ через .
По теореме Пифагора:
Тогда дм²
1. Объем шара V=4/3π*r³. Объем конуса V=1/3SH.
Так как угол при образующей конуса равен 60°, то его образующие вместе с диаметром основания составляют равносторонний треугольник. И раз так, по теореме Пифигора, квадрат радиуса основания конуса равен разности квадратов его диаметра (этому значению равна длинна его образующей) и высоты:
Площадь основания конуса будет π*r². Следовательно, объем конуса будет:
Так как диаметр шара равен высоте конуса, объем шара можно представить как:
.
Найдем теперь отношение объемов конуса и шара:
Следовательно, объем данного конуса составляет 2/3 объема данного шара.
2. Радиус описанной вокруг цилиндра сферы вычисляется по формуле:
Объем цилиндра равен площади его основания, умноженной на высоту. Отсюда высота цилиндра Н=96/48=2 см. Площадь основания равна π*r², отсюда:
.
Площадь сферы равна 4π*R². Подставляем в эту формулу уже найденные значения:
Площадь сферы будет равняться (192+4π) см².