Рисуешь отрезок равный 20см это и есть ав на нем отмечаешь вс равное 13см. затем 20-13=7см это отрезок ав соотвецтвенно ав меньше вс Далее чтоб найти расстояние от в до середины ас нужно 20 разделить на 2 это мы найдем середину ас равную 10см потом выясняем какой длинны должен быть отрезок от в до середины получаем выражение ас 13-10=3 см потом отмечаем отрезок от точки в равный 3см называем эту точку например D и получаем отрезок вd равный 3см
1) Четырехугольник МОКС:
∠МОК=∠АОВ=120°
∠М=∠К=90°,
значит ∠С=60°.( сумма всех углов четырехугольника 360°).
По формуле
S(Δ)=(1/2)·b·c·sinα
находим
S( ΔABC)=(1/2)· AC·BC·sin ∠C=10√3,
2) Из прямоугольного треугольника АСК по теореме Пифагора
АК²=20²-12²=256
АК=16
Если провести вторую высоту из точки В, то получим два равных между собой треугольника ( трапеция равнобедренная по условию) и прямоугольник.
Пусть КD=x, тогда верхнее основание ВС=16-х, нижнее основание AD=16+x
S( трапеции)=(BC+AD)·CK/2=(16-x+16+x)·12/2=32·12/2=16·12=192.
3)∠M=∠Q =60°( трапеция равнобедренная MN=PQ).
ΔMNK - равнобедренный (MN=NK=MQ/2)
Значит ∠MKN=60°, а так как сумма углов треугольника 180°, то и
∠MNK=60°.
Треугольник MNK- равносторонний.
∠KNP=120°-∠MNK=120°-60°=60°
В треугольнике NPK
NP=MK=NK, значит это равнобедренный треугольник с углом 60° при вершине, что означает, треугольник равносторонний.
ΔMNK=ΔKNP.
Все стороны этого треугольника равны между собой.
КР=NK=NP.
NP=KQ
Треугольники КPQ и КNP также равны между собой.
Все три треугольника равны между собой
S( трапеции)=3·5=15
1) найдем НС = АС - АН = 15.
2) По св-ву высоты, проведенной в прямоугольном тр-ке из прямого угла, высота равна корню из произведения двух катетов, в данном случае ВН = √15*5 = 5√3
3) по Пифагору, АВ = √АН² + ВН² = 10.
Ответ: 10.