Так как по условию ПРАВИЛЬНЫАЯ треугольная пирамида, то в основании лежит правильный треугольник.
- площадь основания
Найдем площадь боковой поверхности.
Так как сторона основания есть, то радиус вписанной окружности
r=a/2√3=6/2√3 = √3 см
С прямоугольного треугольника апофема равна
см
Площадь боковой поверхности:
Sп=
Ответ:
Вторая задачка
С прямоугольного треугольника радиус вписанной окружности(основания)
По определению радиусу вписанной окружности правильного треугольника
сторона основания равна
Ответ:
Угол МОР 74, то и дуга на которую он опирается 74
тк MP RT диаметры, то 180 дуга другая
а вписанный угол равен половине дуги на которую он опирается поэтому 90 градусов
1) Треугольник ACB - прямоугольный, угол С=90 градусов (т.к. он опирается на диаметр)
2)Дополнительное построение: CH перпендикулярна AB (высота)
Из п.1 и 2 => AC^2=AH*AB (свойство высоты, проведенной из вершины прямого угла прямоугольного треугольника)
Т.к. AC=AH, заменю и перенесу влево
AC^2-AC-12=0
D=1+48=49
AC=AH=(1+7)/2=4
3) BH=AB-AH
BH=12-4=8
4) CH^2=AH*BH (свойство высоты, проведенной из вершины прямого угла прямоугольного треугольника)
CH^2=4*8
CH=4√2 — расстояние от С до прямой АВ
5) S=1/2*AB*CH
S=12/2*4√2=24√2 — площадь треугольника ABC
Ответ: Влада, я сам не знаю
Объяснение: завтра укушу
Ломанная-прямая согнутая на ^ фигуру звенья концы треугольника длина определяется измерением обеих сторон