Найдём сначала длину диагонали. Обозначим её за х. Исходя из того, что она делит трапецию на два подобных треугольника, получим:
4/х = х/9
х•х = 4•9
х² = 36
х = 6 см.
Значит, диагональ равна 6 см.
Длина окружности равна l = 2πr.
Радиус вписанной окружности равен r = S/p.
Площади подобных треугольников будут относиться так же, как м квадрат коэффициента подобия, полупериметры будут относиться как коэффициент подобия (p - полупериметр).
Тогда r1/r2 = k.
Коэффициент подобия равен 4/6 = 2/3.
Тогда радиус меньшей окружности будет относиться к радиусу большей окружности как 2:3 и => длины окружностей будут относиться так же, как и радиусы. lмень = 18/3 • 2 = 12.
Ответ: 12.
пусть данный паралл. ABCD. AB=14, высота ВН=7√3 Рассмотрим треуг. АВН-он прямоугольный т.к. ВН-высота. По теореме Пифагора находим АН:√АВ^2-BH^2=
=√196-147=√49=7. Катет АН равен половине гипотенузы АВ значит угол против этого катета равен 30. Угол ВАН=180-(90+30)=60. Противоположные углы параллелограмма равны значит угол А=углу С; угол В=углу D
уголВ=углуD=(360-(60+60))/2=240/2=120
Ответ: угол А=углу С=60; уголВ=углуD=120
Сума кутiв 180°, тому 180°-(60°+70°)=50°
.
=>. Этот значок означает ,, следовательно"