Пусть имеем две окружности с центрами O и Q, AB- касательная, которая касается окружностей в т. A и B, BO=7, AQ=2, OQ=13. Из точки Q на BO проведем перпендикуляр QK, тогда ABKQ- прямоугольник, так как углы A и B - прямые по условию, а угол K=90 градусов по построению, тогда AQ=BK и AB=QK
OK=OB-BK
OK=7-2
OK=5
Из прямоугольного треугольника QKO по теореме Пифагора
(QK)^2=(QO)^2-(OK)^2=(13)^2-5^2=169-25=144
QK=12
а значит и AB длина общей касательной равна 12
Их 9 сверху еще очень маленькие треугольники
У параллелограмма сумма углов при боковых сторонах =180 гр. и противолеж углы равны. Значит угол D=180-37=143 гр.
угол Д=В=143 гр.
угол С=А=37 гр.
1.Обозначим ромб АВСD, а точка пересечения диагоналей - О, угол ОВС=50. У ромба все стороны равны, диагонали являются биссектрисами и противоположные углы равны, значит, если угол ОВС = 50, то угол АВС = 50+50=100., и противоположный ему угол АDС = 100. Рассмотрим треугольник ВОС: угол ОВС=50, ВОС = 90-->ВСО=180-90-50=40, следовательно, угол ВСD=40+40=80 и противоположный ему угол ВАD=80.
2.АВСD - прямоугольник, О - точка пересечения диагоналей АС и ВD, угол ОСD = 40. В прямоугольнике диагонали равны и точкой пересечения делятся пополам. Рассмотрим треугольник СОD: ОС=ОD --> этот треугольник равнобедренный, значит у него углы при основании равны и угол ОСD=ОDС. Сумма углов треугольника равна 180 градусам, 180-40-40=100 - угол СОD- острый угол при пересечении диагоналей.