Алгоритм решения уравнения 4 степени разработал итальянец Феррари.
Чтобы в нем разобраться, посмотри здесь.
Самое интересное, что кубическое уравнение решил Кардано, и он же изобрел карданный вал.
Чувствуешь автомобильные ассоциации?
Могу решить неравенство:
6(x-1)+4(x+2) > -9(x+1)+x
6x-6+4x+8 > -9x-9+x
10x+2>-8x-9
18x>-11
x>-11/18
x (= (знак пренадлежит) (-бесконечность;-11/18)(-11/18;бесконечность +)
Ответ:
Насчет первой задачи не могу сам решить,но вот источник той же задачи.http://otvet.mail.ru/question/32553284
Та же задача как и у вас ,только нужно единицу перенести через знак равно.
3^log27(2x-9)=3;
3^(1/3)*log3(2x-9)=3<wbr />^1;
Так, как одинаковые основания то:
(1/3)*log3(2x-9)=1;
log3(2x-9)=3;
2x-9=27;(Для примера, возьмём простейший логарифм Log5(25)=2, значит: 25=5^2)
2x=36;
x=18;
<h2>Ответ:</h2>
18
Но в первом случае можно воспользоваться признаком Даламбера. Найти предел отношения n+1 члена к n члену при n стремящимся к бесконечности.lim((9/10)^(n+1)* (n+1)^7/(9/10)^n*n^7)=lim((9/10)*(n+1)^7/n^7)=9/10*lim((n+1)^7/(n^7))=9/10 (предел равен 1). Так получили 9/10<1, то ряд сходится.
Знакочередующий ряд исследовать можно так: рассмотрим ряд, составленный из модулей, получим ряд 1/ n^2. Так как показатель степени больше 1, то ряд сходится ( для того чтобы это доказать, можно использовать признак Коши интегральный). Так как ряд, составленный из модулей, сходится, то и исходный знакочередующийся ряд сходится причем абсолютно.
Для исследования ряда с артангенсом используем признак Коши. Найдем lim((arctg(1/5^n))^n)^(1/n))=lim(arctg(1/5^n))=0. Следовательно, ряд сходится.
Ну и все остальное в том же духе.
Сначала открываем скобки.
6х-4-12х+9=2-4х;
Затем переносим все с х в одну сторону остальное в другую:
6х-12х+4х=2+4-9;
считаем:
-2х=-3;
х=1.5;