из боковой грани-равнобедренного тр-ка, находишь боковое ребро. оно равно sqrt(169-25)=12
проекция высоты пирамиды на пл-ть основания-центр квадрата, из тр-ка, образованного боковым ребром, половиной диагонали кв-та-проекцией ребра на основание и, собственно, высотой, найдем высоту: H^2= 144-50=94; H=sqrt(94)
1. Наименьшая сторона равна 3 см.
2. р=(3+5+7)/2=15/2=7,5
S=√(р(р-3)(р-5)(р-7))=√(7,5(7,5-3)(7,5-5)(7,5-7))=√(7,5*4,5*2,5*0,5)=√42,1875
3. Получили прямоугольную трапецию с основами 4 и 9 и меньшей боковой стороной 13. Большая сторона (которую мы ищем)=√169-25=√144=12(см)
По свойству острого угла прямоугольного треугольника найдем половину одной из диагоналей из которой потом найдем и другую диагональ.
Так как у ромба углы делятся диагоналями то острые углы в образовавшихся прямоугольных треугольниках будут равны 30 градусов. А по свойству прямоугольно треугольника катет лежащий напротив угла 30 градусов равен половине гипотенузы. Гипотенуза у нас сторона ромба.
Найдем этот катет 1/2 35 = 17.5 первый катет и соответственно одна из полу диагоналей.
17.5*2 = 35 см будет полная диагональ, одну нашли.
Найдем вторую через значение первого катета
По теореме пифагора
35^2-17.5^2=918.75 под корнем
это полу диагональ, найдем целиком диагональ
918.75 под корнем * 2 = 2 под корнем 918.75
Какая же диагональ будет наименьшей? тут и так понятно но можно посчитать возведя числа в квадрат
35^2=1225
2 под корнем 918.75 все в квадрате равно = 4*918.75 = 3675.
Значит наименьшая диагональ равна 35 см.
Точка М - середина ВС, так как АМ - медиана. Следовательно найдём координаты середины: (1+5)/2=3; (-4+2)/2=-1 ; М(3;-1). Найдём длину вектора АМ: (3-0=3; -1-1=-2) ; АМ {3;-2}. Теперь найдём длину вектора АМ: |АМ|: √3²+(-2)²= √9+4= √13. Медиана равна √13