Пусть меньший катет х, тогда больший х+1, по теореме Пифагора составим уравнение
х^2+( х^2+1)^2=√61;
х^2 +х^2+2х+1-61=0; х^2+х-30=0; Д=1+4·30=121;
Х=5, тогда второй катет 6, tgα=5/6
АВ=АС по первому признаку равенства треугольников АДС и АВД: углы САД=углу ВАД (по условию АД биссектриса), угол АДС=углу ВДА ( по условию), сторона АД-общая
OB=AC/2=30/2=15, боковое ребро SB=√(SO^2+OB^2)=√(64+225)=17.
<span>Сторона правильного треугольника вычисляется по формуле a = R</span><em><span>√3</span></em><span /><span>, где R – радиус описанной окружности, и a = 2r</span><em><span>√3</span></em><span /><span>, где r – радиус вписанной окружности, приравняем стороны R</span><em><span>√3</span></em><span /><span><span> </span>= 2·r</span><em><span>√3</span></em><span /><span>, отсюда R = 2r,<span> </span>сдругой сторони по условию задачи R – r = 4 cм, отсюда r = 4 см,<span> </span>тогда R = 2·4 см = 8 см</span>
<span>Ответ: 4 см, 8 см</span>
TgA=AC/AB
tgA=5/5<span>√2=0,1
</span>Вроде так