У прямоугольника углы всегда прямые. Но прямоугольник - это тоже частный случай параллелограма. Главный признак параллелограма - это параллельные стороны.
<em>Ответ:</em>
<em>S = 37,5 ед²</em>
<em>Объяснение:</em>
<em>Известно, что АЕ равна ЕD = 5 ( высота прямоугольной трапеции, проведённая из тупого угла делит её на прямоугольник и прямоугольный тр-к, по свойству прямоугольника, ВС = ЕD)</em>
<em>Если угол АЕВ равен 90 градусов, а угол ВАЕ равен 45 градусов, то угол АВЕ равен 180 - ( 90 + 45 ) = 45 градусов, а значит тр-к АВЕ равнобедренный и сторона ВЕ = АЕ = 5 ( по свойству равнобедренного тр-ка)</em>
<em>Теперь мы можем найти площадь этой трапеции, а площадь трапеции равна произведению высоты на полусумму оснований ( основание ВС равно 5, а основание АD равно 5 + 5 = 10; высота также равна 5)</em>
<em>S = (5 + 10) / 2 • 5 = 15/2 • 5 = 7,5 • 5 = 37,5 ед²</em>
<em>Удачи)))</em>
Средняя линия равна полусумме оснований трапеции.
6,4+8,6/2=7,5 дм или 75 см
Треугольники ABD и СDB прямоугольные по условию. Они равны по одному из признаков равенства прямоугольных треугольников: катеты одного треугольника соответственно равны катетам другого:
- АВ=CD по условию;
- BD - общий катет.
У равных треугольников ABD и СDB равны и гипотенузы AD и CD.
Решение:
третий угол = 180-(120+40)=180-160=20
т.к. АВ>BC>AC, то
сторона АВ - набольшая, соответственно угол С - наибольший = 120
сторона AC - наименьшая, соответственно угол В - наименьший = 20
и угол А = 40