Площади подобных фигур (ЛЮБЫХ, НЕ ТОЛЬКО ТРЕУГОЛЬНИКОВ) относятся как квадраты соответственных линейных размеров (не обязательно сторон, можно брать соотношение соответственных высот, медиан, биссектрис, диагоналей, периметров, радиусов вписанных и описанных окружностей, главное, чтобы была размерность длины).
Такая поверхность получила название "тор", геометрия не очень его изучает, а аналитическая геометрия подробно ее описывает с формулой и прочими подробностями.
Большая диагональ "D" правильного N-угольника выражается через его апофему "a" очень простой формулой: D=√(2+2a). Например, апофема правильного пятиугольника равна Cos36°, тогда D5= √(2+2Cos36°)=1,902110... .
Строим произвольный треугольник АВС с катетами а и b, гипотенузой с. Впишем в него окружность диаметром D с центром в точке О. Через точку О проведем В₁С₁||ВС .Тогда расстояние от северных ворот до дерева В₁Е = m, от южных ворот на запад - С₁А = n. Диаметр окружности D, вписанный в прямоугольный треугольник, определяется формулой
D = а + b – c (1).
Тогда согласно рисунку
b = n + D/2 (2),
с = √(а² + b²) (3),
C₁B₁ = m + D.
На сновании подобия треугольников АВС и АВ₁С₁
a/(n +D/2) = (m +D)/n, откуда
a = (n +D/2)*(m +D)/n (4).
После подстановки в формулу (1) выражений (2), (3), (4) и преобразований относительно D, получаем кубическое уравнение в общем виде
D³ +m D² - 4n²m = 0 (5).
Пусть m = 1 (единичному отрезку), тогда n = 3, согласно условию.
В результате после подстановки значений имеем
D³ + D² - 36 = 0.
Решение уравнения очевидно в данном представлении
D³ + D² = 3³ +3²,
D = 3.
Искомый диаметр города 300*3 = 900 (шагов), а треугольники АВС и АВ₁С₁египетские.
Данное кубическое уравнение не может быть решено с помощью циркуля и линейки, как и знаменитые задачи древности, трисекции угла и удвоение куба. Указанными инструментами решаются уравнения первой и второй степени.
Длины параллелей в северном полушарии уменьшаются к северу и увеличиваются к югу,
пути между линиями долготы, будут короче севернее, а расстояния точек P и C от параллели одинаковые,поэтому путь, через точку P, расположенную севернее точки С ,будет короче.
Ответ:путь АРВ короче пути АСВ