Площадь закрашенной части круга = площадь круга "минус" площадь треугольника.
треугольник вписанный, опирается на диаметр, следовательно он прямоугольный. катет ВС = R
гипотенуза АС = 2R; катет AB = R√3
площадь прямоугольного треугольника = половине произведения катетов:
S = R² √3 / 2
площадь закрашенной части = πR² - R² √3 / 2 = R² * (π - (√3 / 2))
CBD-80° потому что ABD≈CBD
ВЕ=АВ, так как треугольник АВЕ - прямоугольный и равнобедренный, поэтому ВЕ=3. ЕС=7-3=4. СД=ВА=3. ЕД находим по теореме пифагора:
16+9=25
ЕД=5
В начале построим рисунок, который приложу вложением. Для наглядности соединим т. О поочерёдно с точками A, B, C, D. Получаем пирамиду с вершиной в т. O, в основании которой лежит квадрат ABCD.
Первый вопрос: 1). Докажем, что плоскость ABCD параллельна плоскости A1B1C1D1. Для этого построим пары диагоналей AC, BD, а также A1C1, B1D1.
2). Теперь рассмотрим треугольник OBD. Прямая B1D1 параллельна прямой BD, как средняя линия треугольника OBD, т.к. B1D1 соединяет середины его сторон B1 и D1 (эти точки середины по условию).
3). Теперь рассмотрим треугольник OAC. Прямая A1C1 параллельна прямой AC, как средняя линия треугольника OAC, т.к. A1C1 соединяет середины его сторон A1 и C1 (эти точки середины по условию).
4). Тогда получаем, что две пересекающиеся прямые AC и BD плоскости ABCD параллельны двум пересекающимся прямым A1C1 и B1D1 плоскости A1B1C1D1, а из этого, по теореме о параллельности двух плоскостей, следует, что плоскости ABCD и A1B1C1D1 параллельны, что и требовалось доказать.
Второй вопрос: 1). Рассмотрим треугольник OBA. B1A1 - средняя линия треугольника OBA, т.к. соединяет середины сторон OB и OA (B1 и D1 середины по условию). Тогда B1A1=1/2 AB=10/2=5.
2). Аналогично B1C1 - средняя линия треугольника BC, C1D1 - средняя линия треугольника CD, A1D1 - средняя линия треугольника AD.
3). Тогда, B1C1=5, C1D1=5, A1D1=5.
4). Периметр A1B1C1D1=B1C1+C1D1+A1D1+B1A1=5+5+5+5=20
Сумма острых углов в прямоугольном треугольнике равна 90 градусов. один острый угол равен 57 градусов, следовательно имеем: 90-57=33 градуса. Ответ: 33 градуса.