1. Начерти координатную плоскость.
2. Отметь точки А и В.
3. Проведи через них прямые соответственно а и в
4. Укажи координату точки пересечения этих двух прямых!
16;15;14;13;12;11;10; итого-<u> 7</u>
количество символов в первых элементах напоминает послдедовательность фиббоначи, которая задается следующим образом
x0=1
x1=1
x2=
14 элемент твоей последовательности будет по количеству символов равен 15тому элементу последовательности фиббоначи, найдем его
x1=1; x2=2; x3=3; x4=5; x6=8; x7=13; x8=21; x9=34; x10=55; x11=89; x12=144; x13=233; x14= 377; x15=610.
в 15том члене последовательности 610 элементов.
букв 3, поэтому разделив полученное количество элементов на 3 получим количество С 610/3=203.3333 Округляем до ближайшего целого. 203.
В меньшую сторону округлили потому что судя по первым членам последовательность никогда не начинается с элемента С и быть его больше других в последовательности не может. Нечетные элементы начинаются с символа А, значит в 15 элементе также 204 B и 203A.
Домножим каждый член данного выражения на 30, для того что бы сократить знаменатели дробей . Получаем
30-5x+3x=0
-2x=-30
x=15
пусть первое число равно х, а второе у. Тогда 2х+у=11, а x^2+y^2=25.
Получаем систему уравнений:
2х+у=11;
x^2+y^2=25.
Выразим из первого уравнения у:
у=11-2х
и подставим полученное значение во втрое:
x^2+(11-2x)^2=25
x^2+121-44x+4x^2=25
5x^2-44x+121-25=0
5x^2-44x+96=0
Найдем дискриминант квадратного уравнения
D=b^2-4ac=1936-4*5*96=16
Так как дискриминант больше нуля то, квадратное уравнение имеет два корня:
x1=(-b+√D)/(2a)=(44+√16)/(2*5)=4.8
x2=(-b-√D)/2a=(44-√16)/(2*5)=4
В условии задачи сказано, что взяты натуральные числа, значит, нам подходит только х=4
Найдем у:
у=11-2х
у=11-2*4
у=3
Ответ: взяты числа 4 и 3