Так как π/2<a<π то π<2а<2π на этом промежутке sin 2a отрицательный. это надо учесть при нахождении корня. ответ должен быть с минусом
sin2a=2sinacosa=2cosa√(1-cos²a)=2(3/5)√(1-9/25)= 2(3/5)√(16/25)= - 2(3/5)(4/5)= - 24/25= - 0,96
Ответ: 1) Функция определена при x≠3*π*n+3*π/2; 2) T=3*π.
Объяснение:
1) Так как tg(x/3)=sin(x/3)/cos(x/3), и при этом числитель и знаменатель одновременно в 0 не обращаются, то функция y=tg(x/3) определена для всех значений x, кроме таких, которые обращают знаменатель в 0. решая уравнение cos(x/3)=0, находим x/3=π*(2*n+1)/2=π*n+π/2, где n∈Z. отсюда x=3*π*n+3*π/2, где n∈Z.
2) Если функция f(x) имеет период T, то функция f(k*x) имеет период T1=1//k/. В данном случае f(x)=tg(x), T=π, k=/k/=1/3. Отсюда T1=T/(1/3)=π/(1/3)=3*π.