Рассмотрим треугольник АОВ и треугольник СОВ
1) АО=О-В (по условию
2)угол А=В( по условию)
3)угол АОВ=углуСОВ ( тк вертикальные)
<span>Угол при вершине равнобедренного треугольника, противолежащей основанию, равен 120°</span>
<span>тогда углы при основании <Вп=(180-120) /2 = 30</span>
<span>углы при основании являются вписанными <Вп - опираются на хорды ( боковая сторона)</span>
<span>на эту же хорду/сторону опирается центральный угол <Цн</span>
<span>центральный угол в 2 раза больше вписанного <Цн =2* <Вп = 2*30=60 град</span>
<span><span>из центра описанной <span>окружности боковые стороны видны под углом 60 град</span></span></span>
<span>основание видно под углом 2*<Цн =2*60=120 град </span>
V=S(осн) *h
т. к. дана правильная треугольная призма, то в основаниях лежат правильные треугольники, найдем площадь такого треугольника: S(осн) = а²√3/4=36√3/4=9√3 (см²)
боковое ребро правильной треугольной призмы равно высоте
находим объем:
V=9√3*10=90√3 (см³)
ответ: 90√3 см³
Касательная перпендикулярна радиусу. Получился прямоуг. треугольник АВО
Либо по т. Пифагора находим АВ, либо видно, что треуг. египетский. Т.е. АВ=8