№1да т.к.110+70=180
№2да т.к. накрест лежащие углы равны
Площадь прямоугольника-S=<span>a*b
</span>
Докажем, что S = ab.
Достроим прямоугольник до квадрата со стороной a + b, как показано на рисунке 1.
Так как площадь квадрата равна квадрату его стороны, то площадь этого квадрата равна (a + b)2.
С другой стороны, этот квадрат составлен из данного прямоугольника с площадью S, равного ему прямоугольника с площадью S (так как, по свойству площадей, равные многоугольники имеют равные площади) и двух квадратов с площадями a2 и b2. Так как четырехугольник составлен из нескольких четырехугольников, то, по свойству площадей, его площадь равна сумме площадей этих четырехугольников:
<span>(a + b)2 = S + S + a2 + b2</span>, или <span>a2 + 2ab + b2 = 2S + a2 + b2</span>.
Отсюда получаем: S = ab, что и требовалось доказать.