Площадь параллелепипеда равна произведению площади основания на высоту. так как он прямой, то высота равна сторонам граней, то есть АА1, ВВ1, СС1, ДД1. Так как сторона АД меньшая, то диагональ АС тоже меньшая. Чтобы найти площадь параллелограмма АВСД, нужно знать его высоту АН. Высота АН образует два прямоуг треугольника АДН со стороной АД=17 и АСН со стороной АС=39. По теореме Пифагора из АДН => АД*АД=АН*АН+ДН*ДН, а из АСН=>АС*АС=АН*АН+СН*СН, откуда АН*АН=АД*АД-ДН*ДН и АН*АН=АС*АС-СН*СН. Обозначим ДН через х, тогда НС=ДС-х=28-х. Приравниваем выражения высоты АН, получаем
АД*АД-ДН*ДН=АС*АС-СН*СН, следовательно 17*17-х*х=39*39-(28-х)*(28-х)
решая уравнение находим, что х=8=ДН. Из треуг АДН(где АД=17 и ДН=8) находим АН=15. То есть площадь параллелограмма АВСД(основание параллеллепипеда) равна АН*ДС=15*28=420.
Диагональ А1Д образует прямоуг треугольник Д1ДА1, где А1Д1=АД=17, а противоположный угол=45. Отсюда сторона ДД1 (прилежащий к углу катет) находится по формуле ДД1=А1Д1*tg45=17*1=17
Получаем площадь АВСДА1ВС1Д1=17*420=7140
Ответ:
Скобки везде должны быть фигурными
Объяснение:
1) Вектор а имеет координаты (-25;9) ;
2) Вектор в имеет координаты (10;-9) ;
3) Вектор с имеет координаты (-4;0) ;
Рисунка не хватает. Если а и в параллельны, то да - пересекает.
Пусть дан треугольник АВС, и пряммые АВ и АС параллельны плоскости Альфа. Пряммые АВ и АС пересекаются. Через них можно провести плоскость и причем одну. Пусть плоскость которая проходит через пряммые АВ и АС - плоскость Бэта. Тогда она параллельна плоскости Альфа, так как две пересекающиеся пряммые этой плоскости параллельны плоскости Альфа.
Далее. Две точки В и С принадлежат плоскости Бэта (так как принадлежат пряммые АВ и АС), значит и вся пряммая ВС принадлежит плоскости Бэта. Любая пряммая плоскости Бэта паралельна плосоксти Альфа (так плоскосит параллельны), в частности пряммая ВС параллельна плоскости Альфа.
Ответ: третья пряммая тоже паралелльна плоскости