Из вершин В и С опустим перпендикуляры на нижние основание. Нижние основание разбивается на 3 отрезка. Пусть верхнее основание и боковое ребро равно х. Тогда нижние основание разбито на 2 участка равных х/2 (угол при вершине В в полученном треугольнике 30°) и участку равному х
х/2+х+х/2=20
2х=20
х=10
Верхнее основание равно 10
19-14=5 находим НD по теореме Пифагора находим CD=√119
Длина окружности основания:
С =2πr
Длина дуги развертки боковой поверхности:
L = 2πl · α / 360°
В конусе длина окружности основания равна длине дуги развертки боковой поверхности:
C = L
2πr = 2πl · α / 360°
r = l · α / 360°
α = r · 360° / l
Так как осевое сечение - правильный треугольник, то
l = 2r
α = r · 360° / (2r) = 360° / 2 = 180°
Диагональ и сторона в прямоугольном треугольнике всегда образует прямоугольный треугольник.
Значит по теореме пифагора найдём другую сторону a^2=91^2-84^2
a^2=1225
a=35
Тогда a*b=35*84=2940
S=2940