1 случай. Точка A лежит внутри окружности с центром в точке O или на окружности. Докажем, что середины хорд, проходящих через A, образуют окружность с диаметром AO. Если точка M лежит на этой окружности, то угол OMA прямой как вписанный и опирающийся на диаметр, а тогда M - середина хорды, проходящей через A и M. В обратную сторону так же просто.
2 случай. Точка A лежит вне окружности. Тогда середины хорд, проходящих через A, образуют часть окружности с диаметром AO, лежащей внутри нашей. Доказательство аналогично.
Да, тк сумма длин любых двух сторон больше длины оставшейся стороны
Если две стороны одного треугольникатреугольникасоответственно равны двум сторонам другого треугольника, то такие треугольники равны. 3
<span>Основанием правильной треугольной пирамиды является равносторонний треугольник, вершина правильной пирамиды проецируется в центр основания, а боковые грани - равнобедренные треугольники. </span>
<span>Т.к. К - середина ВС, то <em>SK</em> - <em>медиана</em> и <em>высота</em> боковой грани. </span>
<span>Площадь боковой поверхности - сумма площадей трёх боковых граней. </span>
S=a•h:2
S=4•21"2=42
3S=42•3=126 (ед. площади)