Здесь первое, третье и последнее
Не получается второе. Кажется, нет корней. Проверяйте:
(sinx + cosx)√2 = tg2x + ctg2x
Преобразуем отдельно правую и левую части:
tg2x + ctg 2x = sin2x / cos2x + cos2x / sin2x = (sin²2x + cos²2x)/(sin2x·cos2x) =
= 1 / (1/2 sin4x) = 2 / sin4x
sinx + cosx = √2(1/√2 ·sinx + 1/√2 · cosx)= √2·sin (x + π/4)
Получаем:
√2·sin (x + π/4)·√2 = <span>2 / sin4x
</span>2·sin (x + π/4) = <span>2 / sin4x
</span>sin (x + π/4) = 1<span> / sin4x
</span>sin (x + π/4) · <span>sin4x = 1
1/2 (cos (x + </span>π/4 - 4x) - cos (x + π/4 + 4x<span>)) = 1
cos(3x - </span>π/4) - cos(5x +π/4<span>) = 2
Равенство возможно только если первый косинус равен 1, а второй -1 одновременно.
</span>cos(3x - π/4<span>) = 1
</span>cos(5x +π/4<span>) = -1 это система
</span>
3x - π/4 = 2πn
5x +π/4 = π + 2πk
x = π/12 + 2πn/3
x = 3π/20 + 2πk/5
Приравняем их
π/12 + 2πn/3 = <span>3π/20 + 2πk/5
</span>1/12 +2n/3 = 3/20 + 2k/5
n = (6k + 1)/10
k - целое число, поэтому 6k - четное, <span>6k + 1 - нечетное, на 10 нацело не делится. Значит n целым не получится.
Т.е. нет таких целых k и n, чтобы корни были равны. Значит, нет решений.
Возможно, где-то ошиблась...</span>
х - часов в первый день ехал
(5-х)часов - во второй день
20х- расстояние, пройденное в первый день
15(5-х) - расстояние во второй
по условию в первый день на 30 больше
20х=15(5-х)+30
20х = 75-15х+30
35х = 105
х=3
расстояние
20х+15(5-х) = 60+75-45 = 90
0,25=25/100
Теперь извлечь корень не трудно.
1
=2/3*√(3x-1)|12-2=2/3*(√35-√5)
2
=√(2x+1)|12-4=√25-√9=5-3=2
3
(2x³+x²+2x+1)/(1+x²)=[x²(2x+1)+(2x+1)]/(1+x²)=(2x+1)(x²+1)/(1+x²)=2x+1
Под знаком интеграла будет 2х+1 интеграл равен
=x²+x|3-2=9+3-4-2=6
4
(x³-x²-x+1)/(x²-1)=[x²(x-1)-(x-1)]/(x²-1)=(x-1)(x²-1)/(x²-1)=x-1
Под знаком интеграла будет x-1 интеграл равен
=x²/2-x|-2-(-3)=2+2-4,5-3=-3,5
y=|x+1|
y-2
|x+1|=2
x1=-3 x2=2