Начало нужно возвести в квадрат эти числа чтобы избавится от √(корня)
Решение:(все возводим в квадрат и решаем:
=
=1,25
<span>y=6x+3
Вычислить значения на концах отрезка [-1;1]
y=6*(-1)+3
y=-3
y=6*1+3
y=9
-3<9
min f(x)=f(-1)=-3
[-1;1]</span>
Во втором задание ;
700-84=616
616/700=0,88
Ответ:
одна сторона 6 см
другая - 8 см
решение простенькое - система уравнений с 2-мя неизвестными, потом корни квадратного трехчлена или как оно называется.
диагональ - d=10 см
периметр - p = 28 см
2(a+b)=28
a^2+b^2=100(т. Пифагора) )
a+b=14
a=14-b
(14-b)^2+b^2=100
2b^2-28b+96=0
D=28^2-4*2*96=16
x=(28+/-4)/4
x1=8 x2=6
Пусть m — произвольное значение
функции y. Тогда равенство y=m окажется верным при
тех значениях m, при которых уравнение y=f(x) относительно х
имеет корни. Найдем множество значений m, при которых эти уравнения имеют корни. Тем самым мы найдем область значений функций у.
Возведем обе части уравнения √(16-x²)=m в квадрат и выразим x через m
1) m≥0;16-x²≥0⇒|x|≤4
16-x²=m²⇒x²-(16-m²)=0⇒|x|=√(16-m²)⇒<span>√(16-m²)</span><span>≤4</span><span>⇒</span>
<span>|m|</span><span>≤4;</span><span>16-m</span><span>²</span><span>≤16</span><span>⇒|m|</span><span>≤4;</span><span>m</span><span>²</span><span>≥0</span><span>⇒m</span><span>∈[0;4]</span>
<span>E(y)=[0;4] функция ограниченная</span>
<span>2) m</span><span>≥0; x</span><span>²-16</span><span>≥0</span><span>⇒|x|</span><span>≥4</span>
√(x²-16)=m⇒x²-16=m²⇒x²=m²+16⇒|x|=√(m²+16)⇒√(m²+16)≥4⇒
m²+16≥16⇒m²≥0⇒m≥0<span>
</span>
E(y)=[0;∞) функция неограниченная