Точка Р - середина стороны АВ. АК=АВ/2 ⇒АК=АР.
Треугольник КАР равнобедренный, АК=АР.
Обозначим ∠РКА=α ⇒ ∠КРА=∠BРД=α.
ВМ - высота тр-ка АВС. ВМ и КД пересекаются в точке О.
Прямоугольные тр-ки КОМ и ВДО подобны, т.к. ∠КОМ=∠ВОД как вертикальные, значит ∠ОВД=∠РКА=α. ВМ - высота и биссектриса равнобедренного тр-ка АВС, значит ∠АВС=2α.
В прямоугольном тр-ке РВД ∠BРД+∠PBД=α+2α=90°,
3α=90°,
α=30°. Катет ВД лежит напротив в этого угла, значит РВ=2ВД=2·2=4.
АВ=2РВ=2·4=8.
В равнобедренном тр-ке АВС угол при вершине 2α=60°, значит он правильный.
Периметр тр-ка АВС: Р=3АВ=3·8=24 - это ответ.
Биссектриса делит угол пополам.Следовательно,70*2=140.Угол АBC тупой,равен 140 градусам
ΔABD = ΔDCA по трем сторонам (AD - общая, АВ = CD так как трапеция равнобедренная, BD = СA как диагонали равнобедренной трапеции)
⇒ ∠CAD = ∠BDA, тогда ΔAOD равнобедренный, прямоугольный.
Так как АС = BD и АО = OD, то и ОС = ОВ.
⇒ ΔВОС равнобедренный, прямоугольный.
Проведем высоту КН через точку пересечения диагоналей.
ОК - высота и медиана равнобедренного треугольника ВОС,
ОН - высота и медиана равнобедренного треугольника AOD.
ОК = ВС/2 как медиана, проведенная к гипотенузе,
ОН = AD/2как медиана, проведенная к гипотенузе.
⇒ КН = (AD + BC)/2,
средняя линия треугольника равна полусумме оснований, значит
средняя линия равна высоте и равна 19 см.
Можно. Потому что сам правильный шестиугольник состоит из шести правильных треугольников. И при их соединении просветов не наблюдается
:)