MN - средняя линия треугольника ABC. Поскольку по условию MN⊥ плоскости α, а AC║MN⇒AC⊥α⇒AC равно расстоянию от C до α, которое и требуется найти. Поскольку CAB прямоугольный Δ (∠CAB=90°, так как прямая, перпендикулярная плоскости, перпендикулярна любой прямой, лежащей в этой плоскости), для нахождения AC можно применить теорему Пифагора
AC²=BC²-AB²=100-64=36=6²; AC=6.
Ответ: 6
Отрезок, соединяющий середины диагоналей трапеции равен полуразности большего и меньшего оснований.
(8-5)/2=1,5
1)S=PiR^2=36Pi(cm^2)
C=2PiR=12Pi(cm)
2)R=C/2pi=16Pi/2Pi=8cm
S=PiR^2=64Pi {cm^2}
Смотри во вложениях, может, подойдет. Желаю успехов
В ΔABC проводим радиус вписанной окружности OH, в пирамиде - апофему DH.
ОH считаем по формуле радиуса вписанной в правильный треугольник окружности (r=a√3/6), по теореме Пифагора находим DH.
Площадь боковой поверхности пирамиды равна шести площадям прямоугольного треугольника DHC (св-во правильной пирамиды) с катетами HC=AC/2=3 и DH=5.
Ответ: 45