корень четной степени он всегда неотрицательный , его можно отбросить как положительное число, только найти одз
2x² + 5x + 2 > 0 (почему > а не >= в неравенстве строгое неравенство)
D=5² - 4*2*2 = 9
x12=(-5 +- 3)/2 = -4 -1
(x+1)(x+4)>0
метод интервалов
+++++++(-4) ------------- (-1) ++++++++
x∈(-∞ -4) U (-1 +∞)
остается решить
x² + 3x - 10 > 0 учитывая полученное ОДЗ
D = 9 + 40 = 49
x12= (-3 +- 7)/2 = -5 2
(x+5)(x-2) > 0
метод интервалов
+++++++++(-5) ---------------- (2) ++++++++
x ∈ (-∞ -5) U (2 +∞) учитываем ОДЗ x∈(-∞ -4) U (-1 +∞)
Ответ x ∈ (-∞ -5) U (2 +∞)
............................................
Sin²a+sin²b+2sinasinb+cos²a+cos²b+2cosacosb=
=(sin²a+cos²a)+(sin²b+cos²b)+2(sinasinb+cosacosb)=
=1+1+2cos(a-b)=2(1+cos(a-b))
4cos²((α-β)/2)=4*(1+cos(a-b))/2=2(1+cos(a-b))