X - n-ый член арифметической прогрессии -6,-12, -18,..., х, ...
d=-12-(-6)=-6 , a₁= -6 .
Найдём номер для "х" :
Y = 2logₐx/ln(ax)
числитель = 2logₐx=2lnx/lna=2/lnа * lnx
знаменатель = ln(ax) = lna + lnx
Преобразования сделали, теперь производную ищем по формулу:
(U/V)'= (U'V - UV')/V²
решение:
y'= ((2/lnа * lnx)' * (lna + lnx) - 2/lnа * lnx *(lna + lnx)' )/(lna + lnx)²=
=(2/хlnа *(lna + lnx) - 2/lnа * lnx *1/x )/(lna + lnx)²=
=(2/xlnа *(lna + lnx - lnx))/(lna + lnx)²= 2lna/(xlnа(lna + lnx)²)
(8^9*(8^2-8-1))/(4^13*(4^2-4-1))= (2^27*(64-8-1))/(2^26*(16-4-1))=(2*55)/11 = 2*5=10
5x+y=-1
y=-5x-1
xy=-6
x(-5x-1)=-6
-5x²-x=-6
5x²+x-6=0
D=1+120=121
x1=(-1-11)/10=-1,2⇒y=-5*(-1,2)-1=6-1=5
x2=(-1+11)/10=1⇒y=-5*1-1=-6
(-1,2;5);(1;-6)