Sinx=0.5√2
x=(-1)^k*π/4+πk, k € Z
2) 2sin²x-cosx-1=0
2-2cos²x-cosx-1=0
2cos²x+cosx-1=0
Пусть cosx=t(|t|≤1)
2t²+t-1=0
D=1+8=9
t1=(-1+3)/4=1/2
t2=(-1-3)/4=-1
замена
cosx=1/2
x=±π/3+2πn, n € Z
cosx=-1
x=±π+2πn, n € Z
3)sin²x-2sinxcosx-3cos²x=0|:cos²x
tg²x-2tgx-3=0
D=4+12=16; √D=4
tgx=-1
x=-π/4+πn, n € Z
tgx=3
x=arctg3+πn, n € Z
cos(1,5п+6x) - sin (-2x) / 1+cos (-4x)=(sin6x+sin2x)/(1+cos4x)=2sin4xcos2x/2cos^2 (2x)=sin4x/cos2x=2sin2xcos2x/cos2x=<u>2sin2x</u>
Ответ:
Вот держи(прости за плохое качество)
Ответ:5
Объяснение:нули функции это точки, в которых у=0