По т косинусов MN^2=MК^2+КN^2-2 MKxKNcos120**=9+16+2x3x4x1/2=25+12=37
MN=V37
Угол 3 = углу 1= 132
Угол 2 180-132= 48
<span>ответ 48</span>
<span>проведем высоту от точки В к прямой АС.</span>
<span>D точка пересечения высоты с АС.</span>
<span>D1 точка пересечения высоты с МN.</span>
<span>так как точки М и N средние точки на прямых. запишем следующие зависимости:</span>
<span>АС = 2*МN</span>
<span>BD = 2*(BD1)</span>
<span>Sbmn = (BD1)*МN/2=12</span>
<span>следует (BD1)*МN=24</span>
<span>Sabc = BD*AC/2 подставляем зависимости Sabc = 2*МN*2*(BD1) /2= 2*(BD1)*МN</span>
<span>так как (BD1)*МN=24 то Sabc = 2*24= 48 см в квадрате</span>
Сумма углов треугольника 180 ,значит сумма угла В и С равна 180-50=130
Угол В=х,тогда угол С=12х
х+12х=130
13х=130
х=10
В=10
С=10*12=120
Пусть угол BAC = α
∠ABC + ∠ACB = 180° - α
∠IBC + ∠ICB = (180° - α)/2 = 90° - α/2 (т.к. центр вписанной окружности лежит в точке пересечения биссектрис)
∠BIC = 180° - (∠IBC + ∠ICB) = 180° - 90° + α/2 = 90° + α/2
∠BKC = 180° - ∠BIC = 180° - 90° - α/2 = 90° - α/2 (сумма противоположных углов четырехугольника вписанного в окружность равна 180°)
∠BOC - центральный углу ∠BKC => ∠BOC = 2*∠BKC = 2*(90° - α/2) = 180° - α
т.к. ∠BAC + ∠BOC = α + 180° - α = 180°, то около ABOC можно описать окружность, но это та же окружность, которая описана около треугольника АВС и на ней лежит точка О. Что и требовалось доказать
Ответ: доказано.