Перевод радиан в градусы
Зная, что углу 2 * пи соответствует угол 360 градусов:
Ad = Ar * 180 / пи
Где Ad — угол в градусах, Ar — угол в радианах.
Перевод градусов в радианы
Зная, что углу 360 градусов соответствует угол 2 * пи:
Ar = Ad * пи / 180
Где Ad — угол в градусах, Ar — угол в радианах.
ФОРМУЛЫ РАСЧЕТА ДЛИНЫ
Длина окружности
L = 2 * пи * R
Где L — длина окружности, R — радиус окружности.
Длина дуги окружности
L = A * R
Где L — длина дуги окружности, R — радиус окружности, A — центральный угол, выраженный в радианах.
Так, для окружности, A = 2*пи (360 градусов) , получим L = 2*пи*R.
ФОРМУЛЫ РАСЧЕТА ПЛОЩАДИ
Площадь треугольника.
Формула Герона.
S = (p * (p-a) * (p-b) * (p-c) )^1/2.
Где S — площадь треугольника, a, b, c — длины сторон,
p=(a+b+c)/2 — полупериметр.
Площадь круга
S = пи * R²
Где S — площадь круга, R — радиус круга.
Площадь сектора
S = (Ld * R)/2 = (A * R²)/2
Где S — площадь сектора, R — радиус круга, Ld — длина дуги.
Площадь поверхности шара (сферы)
S = 4 * пи * R²
Где S — площадь поверхности шара, R — радиус шара.
Площадь боковой поверхности цилиндра
S = 2 * пи * R * H
Где S — площадь боковой поверхности цилиндра, R — радиус основания цилиндра, H — высота цилиндра.
Площадь полной поверхности цилиндра
S = 2 * пи * R * H + 2 * пи * R²
Где S — площадь боковой поверхности цилиндра, R — радиус основания цилиндра, H — высота цилиндра.
Площадь боковой поверхности конуса
S = пи * R * L
Где S — площадь боковой поверхности конуса, R — радиус основания конуса, L — длина образующей конуса.
Площадь полной поверхности конуса
S = пи * R * L + пи * R²
Где S — площадь полной поверхности конуса, R — радиус основания конуса, L — длина образующей конуса.
ФОРМУЛЫ РАСЧЕТА ОБЪЕМА
Объем шара
V = 4 / 3 * пи * R³
Где V — объем шара, R — радиус шара.
Объем цилиндра (прямого, круглого)
V = пи * R² *H
Где V — объем цилиндра, R — радиус основания цилиндра, H — высота цилиндра.
Объем конуса (прямого, круглого)
V = 1/3 пи * R² * H
<span>Где V — объем конуса, R — радиус основания конуса, H -конуса</span>
Ответ:
ВК = 5 ед. длины.
Объяснение:
Медиана треугольника делит противоположную сторону пополам.
В нашем случае это сторона АС. Координаты точки К (середины АС) найдем по формуле:
Xk = (Xa+Xc)/2 = (-3+3)/2 =0.
Yk =(Ya+Yc)/2 = (5+3)/2 = 4.
Расстояние между точками В(4;1) и К(0;4) найдем по формуле:
ВК = √((Xk-Xb)² + (Yk-Yb)²) = √(16+9) = 5 ед.
Рассмотрим ∆ABD и ∆BCD. Подобны по 3-ему признаку т.к их стороны пропорциональны, отношение: AD:BC=AB:BD=BD:CD = 6:8=9:12=12:16=0,75. В подобных треугольниках углы, лежащие сходственных сторон равны. Угол ABD=BDC, накрест лежащие углы при прямых AB и CD и секущей BD. Значит, AB||CD. Поэтому, четурехугольник ABCD - трапеция. Основаниями AB и CD.
Формула площади правильного треугольника: S = a²√3/4.
a = 10 см, тогда S = 10² · √3/4 = 25√3 (cм²)
Сперва находим сторону квадрата, которая будет являться диаметром круга.
Обозначим катет за Х. √2х²=10√2 ⇒х=10.
Площадь круга равна: piR². R=0,5d. R=10*0,5=5. S=25pi.
S/pi=25.