Для начала упростим tg(π/4-x/2) использую табличную формулу для тангенса разности:
tg(π/4-x/2) = (tgπ/4 – tgx/2)/ (1 + tgπ/4 * tgx/2) = (1 – tgx/2)/(1 + tgx/2) (1)
sinx = 2(tgx/2)/(1 + tg²x/2) (2)
1 + sinx = 1 + 2(tgx/2)/(1 + tg²x/2) = (1 + tgx/2)²/(1 + tg²x/2) (3)
Делаем подстановки (1), (2) и (3) в исходное выражение:
2(tgx/2)/(1 + tg²x/2) / {[(1 – tgx/2)/(1 + tgx/2)] *[(1 + tgx/2)²/(1 + tg²x/2)]} = 2(tgx/2)/(1 + tg²x/2) / {[(1 - tgx/2) * (1 + tgx/2)] / (1 + tg²x/2)} = 2(tgx/2)/(1 + tg²x/2) / [(1 - tg²x/2) / (1 + tg²x/2)] = 2(tgx/2)/(1 - tg²x/2) = tgx
Ответ: sinx/tg(П/4-x/2)(1+sinx) = tgx
B1=6; q= -4;
b4= b1*q^3= 6*(-4)^3= -384
Синусоид(*), который расположен только на положительных 'y'
6m-6n+am-an , было очень легко:)