С учетом поправки к условию:
ОВ = ОС, ∠АСО = ∠DBO по условию
∠АОС = ∠DOB как вертикальные, ⇒
ΔАОС = ΔDOB по стороне и двум прилежащим к ней углам.
Дано: <span>сторона основания правильной треугольной пирамиды равна a = 6 см, а боковое ребро L = 4 см.
Площадь основания So = a</span>²√3/4 = 36√3/4 = 9√3 см².
Апофема А = √(L² - (a/2)²) = √(16 - 9) = √7 см.
Периметр основания Р =3а = 3*6 = 18 см.
Площадь боковой поверхности Sбок = (1/2)PA = (1/2)*18*√7 = 9√7 см².
Искомая площадь полной поверхности пирамиды равна:
Sп = Sо + Sбок = 9√3 + 9√7 = 9(√3 + √7) ≈ <span><span>39,40022 см</span></span>².
Все углы = 360*
Угол 4 = 360-325=35*
4-й и 2-ой ветикальные т.е оба будут равны 35*
360-70=290*
290:2=145 т.к 1 и 3 тоже вертикальные
Угол 1 и 3 = 35*, угол 2 и 4 = 35*