√(1+sinx)/cosx=1
√(1+sinx)=cosx ОДЗ: cosx≠0 x≠π/2+πn
1+sinx=cosx
sin²(x/2)+cos²(x/2)+2*sin(x/2)*cos(x/2) -cos²(x/2)+sin²(x/2)=0
2sin²(x/2)+2sin(x/2)*cos(x/2)=0
2*sin(x/2)*(sin(x/2)+cos(x/2))=0
sin(x/2)=0
x/2=πn
x₁=2πn
sin(x/2)+cos(x/2)=0
sin(x/2)=-cos(x/2) cos(x/2)≠-1 x/2≠-π/2+2πn x≠π+2πn
tg(x/2)=-1
x/2=-π/4+πn
x₂=-π/2+2πn x₂∉ по ОДЗ
Ответ: x₁=2πn.
(m-1n) в квадрате -2mn+3 nв квадрате
∠ВАД=180⁰-135⁰=45⁰
S=42*16*Sin45⁰=42*16*√2/2=336*√2
Решение
Задача решается по формуле классической вероятности P=m/n где
n-общее число вариантов, m- число благоприятных вариантов. Найдем число всех
вариантов. Если на первой карточке 1 то второй могут быть цифры 2, 3, 4, 5
итого 4 варианта. Если на первой карточке цифра 2, то на второй карточке могут
быть цифры 1, 3, 4. 5 итого 4 варианта. Аналогично если на первой карточке
цифра 3 то опять буде 4 варианта, если на первой карточке цифра 4, тоже 4
варианта и если цифра 5 то все равно 4 варианта. Получается что с каждой цифрой
по 4 варианта, всего 20 вариантов. <span>n=20.
Найдем количество благоприятных вариантов. Если на первой
карточке цифра 1 то на второй могут быть цифры 2, 3, 4, 5 все они больше 1.
Получается 4 варианта. Если на первой карточке цифра 2 то на второй могут быть
цифры 1, 3, 4, 5. Из них только три цифры больше 2. Значит 3 варианта. Если на
первой карточке цифра 3, то будет только 2 варианта (если на второй карточке
цифры 4 или 5). Если на первой карточке цифра 4 то только 1 вариант (цифра 5 на
второй карточке) . Если на первой карточке цифра 5 то вариантов нет (все цифры
меньше 5). Итак, благоприятных вариантов всего получается
4+3+2+1=10
m=10
P=10/20=1/2=0,5
<span>Ответ: 0,5</span></span>