Угол 1 =110 угол 2=70 смежные углы
<span>1.Сумма двух смежных углов равна 180°
-значит, данные углы не могут быть смежными,так как сумма равна 114°. Поэтому углы ∠1 и ∠3 - вертикальные
-значит 114/2=57 грудсов каждый
-смежные с ними углы </span>∠2 и ∠4 будут равны 180-57=123 градуса
2.<span>Углы ∠1 и ∠2 смежные
</span>-значит ∠3 и ∠1 220-180=40 градусов
-∠2 и ∠4 вертикальны 220-2*40=140 градусов
<span>
ОТВЕТ:а)57,123,57,123 б)40,140,40,140
</span>
Пусть дана окружность радиуса R с центром в точке О и внутри её точка <span>N.
Вычертим отдельно условный равнобедренный треугольник ОАВ и на стороне АВ точка </span>N. ОА и ОВ - это радиусы.
Проведём отрезок ОN, равный расстоянию d от центра до точки <span>N.
Из центра опустим перпендикуляр Оh на сторону АВ.
По условию задания А</span>N:В<span>N = 3:4. Примем коэффициент пропорциональности за х.
Тогда А</span>N = 3х, а В<span>N = 4х. Перпендикуляр Оh делит АВ пополам.
Составляем уравнения из треугольников ONA и Оh</span><span>N.
</span>Оh² = R²-(3.5x)² = R²-12,25x².
Oh² = d²-(0,5x)² = d²-0,25x², отсюда вытекает R²-12,25x²<span> = d²-0,25x².
Приведём подобные: 12x</span>² = R²-d².
Находим коэффициент х =√((R²-d²)/12) = √(R²-d²)/2√3.
Можно определить длину отрезка АN = 3x = 3√(R²-d²)/2√3 = <span>√(3(R²-d²))/2.
Теперь в треугольнике OAN известны 3 стороны, поэтому находим по теореме косинусов косинус угла AON, а по нему и сам угол.
Ответ: от отрезка ON откладываем найденный угол </span><span>AON, проводим радиус ОА и через точки A и N проводим искомую хорду АВ.</span>
Отложенные на лучах отрезки вместе отрезками, которые соединяют их концы, образуют прямоугольные треугольники с общей вершиной О, и составляют фигуру, похожую на пирамиду с высотой СО (см. рисунок приложения). <u>ВС найдем из прямоугольного ∆ ВОС</u>. Для этого по т.Пифагора найдем ВО²=ВD²-OD²=11²-(√3)²=118. По т.Пифагора ВС=√(BO²+CO²)=√(118+49)=√167≈12,9 (ед. длины)